(3x^2+4x+6)=(7x^2-1)

Simple and best practice solution for (3x^2+4x+6)=(7x^2-1) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (3x^2+4x+6)=(7x^2-1) equation:



(3x^2+4x+6)=(7x^2-1)
We move all terms to the left:
(3x^2+4x+6)-((7x^2-1))=0
We get rid of parentheses
3x^2+4x-((7x^2-1))+6=0
We calculate terms in parentheses: -((7x^2-1)), so:
(7x^2-1)
We get rid of parentheses
7x^2-1
Back to the equation:
-(7x^2-1)
We get rid of parentheses
3x^2-7x^2+4x+1+6=0
We add all the numbers together, and all the variables
-4x^2+4x+7=0
a = -4; b = 4; c = +7;
Δ = b2-4ac
Δ = 42-4·(-4)·7
Δ = 128
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{128}=\sqrt{64*2}=\sqrt{64}*\sqrt{2}=8\sqrt{2}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-8\sqrt{2}}{2*-4}=\frac{-4-8\sqrt{2}}{-8} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+8\sqrt{2}}{2*-4}=\frac{-4+8\sqrt{2}}{-8} $

See similar equations:

| (3x^2+4x+6)=(7x^2=1) | | 3x^2+4x+6=7x^2=1 | | 18/2x=4 | | 2x-1/3+x+2/2+x/6=8 | | 2x+(x-36)=180 | | 7x-5=14+2x | | x+5/6=2x+1/3 | | x+5/6=2x+1 | | 5(p-5)-2(3p-4)=3p | | h/3+24=32 | | 5x*3=60 | | t+76/–3=–9 | | -3/4=w+4 | | x/2=5(2-3)-2x+9=0 | | 95=d/7+86 | | 16.99+0.99x=164.50 | | -3x+2=8x-20 | | c+20/4=-5 | | z/3-5=-4 | | 12=x/0.8 | | x+1,6=3,2–x | | 12/1=x/0.8 | | 19t+18=15t−18 | | 15+2x=8+x | | 17+x=2x | | 16t^2-27t-2=0 | | x÷(-5)=4 | | -15-5x=-15-2x | | 4x-103+4x-114+6x-125=0 | | 2x-45=4x-15 | | 0.5^n-1=8 | | 13=t/3+10 |

Equations solver categories